Calculation of Thermal Solid Coupling Fatigue Life of Module Power Supply under Thermal Load

MA Yuwei, QIAN Yaxin, ZHANG Jing, LYU Yongguo, WANG Ganghu

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 111-117.

PDF(3613 KB)
PDF(3613 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 111-117. DOI: 10.7643/ issn.1672-9242.2025.12.014
Key Projects Equipment

Calculation of Thermal Solid Coupling Fatigue Life of Module Power Supply under Thermal Load

  • MA Yuwei, QIAN Yaxin, ZHANG Jing, LYU Yongguo, WANG Ganghu
Author information +
History +

Abstract

The work aims to calculate the damage degree and fatigue life of a shipboard DC-DC module power supply structure under the condition of high and low temperature cycles. A finite element analysis model based on thermal solid coupling was established to analyze the structural strength of the module power supply operating at room temperature without or with heat radiators. The effect of temperature on the structure was investigated, and the finite element model was verified by experiments to ensure its effectiveness and accuracy. The Manson-Coffin fatigue life numerical simulation model was established, and the low cycle fatigue life prediction and fatigue damage analysis based on the strain-life method were carried out considering the STW average stress correction criterion. The effect of temperature field on the structure field was significant. After installation of the radiator, the deformation of the module power structure and the maximum value of equivalent stress were significantly reduced, the displacement response was reduced by 71.8%, and the equivalent stress response was reduced by 64.2%. The fatigue life analysis of the module power supply with the heat radiator was carried out based on thermal coupling. By simulating the structural state of the module power supply under high and low temperature cycles, the fatigue life of the module power supply were obtained. This study provides a method for fatigue life analysis of the module power supply under simulated high and low temperature cycles, and comprehensively evaluates the structure of the module power supply, which provides reference and basis for structural design and replacement of the module power supply.

Key words

module power supply / thermal solid coupling / fatigue life / temperature cycle / numerical simulation / Manson-Coffin model

Cite this article

Download Citations
MA Yuwei, QIAN Yaxin, ZHANG Jing, LYU Yongguo, WANG Ganghu. Calculation of Thermal Solid Coupling Fatigue Life of Module Power Supply under Thermal Load[J]. Equipment Environmental Engineering. 2025, 22(12): 111-117 https://doi.org/10.7643/ issn.1672-9242.2025.12.014

References

[1] 何林涛, 任建峰, 张克非, 等. 一种连接器振动故障分析[J]. 装备环境工程, 2023, 20(1): 30-36.
HE L T, REN J F, ZHANG K F, et al.Vibration Fault Analysis for a Connector[J]. Equipment Environmental Engineering, 2023, 20(1): 30-36.
[2] 秦飞, 别晓锐, 陈思, 等. 随机振动载荷下塑封球栅阵列含铅焊点疲劳寿命模型[J]. 振动与冲击, 2021, 40(2): 164-170.
QIN F, BIE X R, CHEN S, et al.Vibration Lifetime Modeling of PBGA Solder Joints under Random Vibration Loading[J]. Journal of Vibration and Shock, 2021, 40(2): 164-170.
[3] 逯志国, 朱曦全, 卫国, 等. 基于疲劳累积损伤等效理论的PCB板振动加速试验研究[J]. 装备环境工程, 2018, 15(3): 53-56.
LU Z G, ZHU X Q, WEI G, et al.Vibration Acceleration Test of Printed Circuit Based on Equivalent Theory of Fatigue Cumulative Damage[J]. Equipment Environmental Engineering, 2018, 15(3): 53-56.
[4] 张阳, 王维民, 张杨. 电-热-固耦合作用下IGBT高周疲劳寿命评估方法研究[J]. 电子元件与材料, 2021, 40(11): 1151-1158.
ZHANG Y, WANG W M, ZHANG Y.Research on Hing Cycle Fatigue Life Assessment Method of IGBT Under Electro-Thermal-Solid Coupling[J]. Electronic Components and Materials, 2021, 40(11): 1151-1158.
[5] 张溯, 程昊, 郭秦, 等. 随机振动载荷下电子箱PCBA焊点疲劳寿命分析[J]. 自动化与仪表, 2023, 38(1): 11-14.
ZHANG S, CHENG H, GUO Q, et al.Vibration Lifetime Analysis of Electronic Box Under Random Vibration Loading[J]. Automation and Instrumentation, 2023, 38(1):11-14.
[6] LI S, SUBRAMANIAM U, YANG G, et al.Investigation of the Thermal Loading and Random Vibration Influences on Fatigue Life of the Solder Joints for a Metal-Oxide-Semiconductor-Field-Effect Transistor in a DC-DC Power Boost Converter[J]. IEEE Access, 2020, 8: 64011-64019.
[7] 陈玉香, 杨欢. 电力电子器件的热疲劳寿命预测[J]. 电源学报, 2013(6): 79-83.
CHEN Y X, YANG H.Lifetime Prediction of Power Electronic Devices[J]. Journal of Power Supply, 2013(6): 79-83.
[8] 付永辉, 王琼皎, 董锋, 等. 电子设备耦合刚度对QFP器件振动可靠性的影响[J]. 振动与冲击, 2023, 42(22): 204-209.
FU Y H, WANG Q J. DONG F, et al.Effects of Electronic Equipment Coupling Stiffness on the Reliability of the QFP Component of an Electronic Equipment Under Vibration[J]. Journal of Vibration and Shock, 2023, 42(22): 204-209.
[9] 付建新, 石文明, 李海威, 等. 考虑热振耦合作用的车载功率模块引脚焊点疲劳寿命分析与优化[J]. 机械与电子, 2025, 43(1): 63-73.
FU J X, SHI W M, LI H W, et al.Analysis and Optimization of Fatigue Life of Vehicle-Mounted Power Module Pin Solder Joints Considering Thermal and Vibration Coupling Effect[J]. Machinery and Electronics, 2025, 43(1): 63-73.
[10] 付建新, 陈祥, 李海威, 等. 电热固耦合作用下车载功率模块引脚焊点振动疲劳寿命研究[J]. 力学季刊, 2024, 45(2): 429-441.
FU J X, CHEN X, LI H W, et al.Research on Vibration Fatigue Life of Pin Solder on Vehicle-Mounted Power Module under Electric-Thermal-Solid Coupling[J]. Chinese Quarterly of Mechanics, 2024, 45(2): 429-441.
[11] 金磊, 郑江涛, 屈诚志, 等. 航天器电子产品多引脚器件引脚疲劳寿命研究[J]. 上海航天(中英文), 2022, 39(S2): 183-189.
JIN L, ZHENG J T, QU C Z, et al.Spacecraft Electronics Pin Fatigue Life Study of Multi-pin Devices[J]. Aerospace Shanghai (Chinese and English), 2022, 39(S2): 183-189.
[12] 薛治伦, 张金萍, 张顺, 等. 热振耦合环境下功率模块的疲劳寿命预测[J]. 半导体技术, 2023, 48(10): 935-941.
XUE Z L, ZHANG J P, ZHANG S, et al.Fatigue Life Prediction of Power Modules in Thermal-Vibration Couplied Environment[J]. Semiconductor Technology, 2023, 48(10): 935-941.
[13] 张忠孝, 张金萍, 张顺. 振动环境下功率模块的应力形变响应分析与寿命预测[J]. 半导体技术, 2023, 48(5): 435-442.
ZHANG Z X, ZHANG J P, ZHANG S, et al.Stress Deformation Response Analysis and Life Prediction for Power Modules Under Vibration Environment[J]. Semiconductor Technology, 2023, 48(5): 435-442.
[14] 张宇娇, 范虹兴, 张炫焜, 等. 柔性直流输电换流阀用IGBT模块焊料层疲劳寿命研究[J]. 高电压技术, 2020, 46(10): 3381-3389.
ZHANG Y J, FAN H X, ZHANG X K, et al.Fatigue Life Analysis of IGBT Module Solder Layer for VSC-HVDC Valve[J]. High Voltage Engineering, 2020, 46(10): 3381-3389.
[15] 韩奕晨, 肖策, 张晋岢, 等. 随机振动下航天电器件失效机理及疲劳寿命预测[J]. 宇航学报, 2025, 46(6): 1092-1101.
HAN Y C, XIAO C, ZHANG J K, et al.Failure Mechanism and Fatigue Life Prediction of Aerospace Electrical Components under Random Vibration[J]. Journal of Astronautics, 2025, 46(6): 1092-1101.
[16] 梁佩, 陈海峰, 魏斌, 等. 温度循环对国产化CLCC板级装联可靠性的影响[J]. 电子产品可靠性与环境试验, 2025, 43(3): 71-78.
LIANG P, CHEN H F, WEI B, et al.Effect of Temperature Cycling on the Reliability of Domestic CLCC Board-Level Assembly[J]. Electronic Product Reliability and Environmental Testing, 2025, 43(3): 71-78.
[17] 冯明祥, 蒋庆磊, 王旭艳. 零应力温度和模型简化对CCGA器件寿命评估的影响[J]. 机械工程学报, 2024, 60(12): 268-276.
FENG M X, JIANG Q L, WANG X Y.Influence of Stress-Free Temperature and Model Simplification in life Evaluation of CCGA Packages[J]. Journal of Mechanical Engineering, 2024, 60(12): 268-276.
[18] 曾芷筠, 郭勤涛, 潘勇. 基于修正模型的电路板焊点疲劳寿命分析[J]. 机械设计与制造工程, 2023, 52(11): 1-5.
ZENG Z J, GUO Q T, PAN Y.Fatigue Life Analysis on PCB Solder Joints Based on Rain Flow Statistics and Model Modification[J]. Machine Design and Manufacturing Engineering, 2023, 52(11): 1-5.
[19] 马正刚, 夏宗泽. 焊点加速寿命试验模拟[J]. 环境技术, 2022, 40(5): 73-75.
MA Z G, XIA Z Z.Simulation of Accelerated Life Testing of Solder Joints[J]. Environmental Technology, 2022, 40(5): 73-75.
[20] SMITH K N, WATSON P, TOPPER T H.Stress-Strain Function for the Fatigue of Metals[J]. Journal of Materials, 1970, 5(4): 767-778.
[21] 国家军用标准出版发行部. 电子产品环境应力筛选方法: GJB 1032A—2020[S]. 北京: 国家军用标准出版发行部, 2021.
National Military Standards Publishing and Distribution Department. Environmental Stress Screening Method for Electronic Products: GJB 1032A—2020[S]. Beijing: National Military Standards Publishing and Distribution Department, 2021.
[22] BASQUIN O H.The Exponential Law of Endurance Tests[J]. Proc ASTM, 1910, 10:625-630.
[23] COFFIN L F Jr. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal[J]. Journal of Fluids Engineering, 1954, 76(6): 931-949.
[24] 沈月, 何国球, 田丹丹, 等. 二次枝晶臂间距对A319铝合金拉伸及疲劳性能的影响[J]. 材料研究学报, 2014, 28(8): 587-593.
SHEN Y, HE G Q, TIAN D D, et al.The Influence of SDAS on the Tensile Properties and Fatigue Behavior of A319 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2014, 28(8): 587-593.
[25] 孙振华, 罗辉阳, 赵世琦. 橡胶增韧环氧树脂的低周疲劳行为[J]. 清华大学学报(自然科学版), 1999(4): 18-21.
SUN Z H, LUO H Y, ZHAO S Q.Low Cycle Fatigue Behavior of Rubber Toughened Epoxy Resins[J]. Journal of Tsinghua University (Science and Technology), 1999(4):18-21.
[26] MERCHANT H D, MINOR M G, LIU Y L.Mechanical Fatigue of Thin Copper Foil[J]. Journal of Electronic Materials, 1999, 28(9): 998-1007.
[27] SAE Material Properties Division Subcommittee of the SAE Fatigue Design and Evaluation Committee. Technical Report on Cycle Fatigue Properties Ferrous and Non-Ferrous Materials: SAE J1099-2018[S]. USA: SAE International, 2018.
PDF(3613 KB)

Accesses

Citation

Detail

Sections
Recommended

/